The structural and functional organization of H-NS-like proteins is evolutionarily conserved in gram-negative bacteria.
نویسندگان
چکیده
The structural gene of the H-NS protein, a global regulator of bacterial metabolism, has been identified in the group of enterobacteria as well as in closely related bacteria, such as Erwinia chrysanthemi and Haemophilus influenzae. Isolated outside these groups, the BpH3 protein of Bordetella pertussis exhibits a low amino acid conservation with H-NS, particularly in the N-terminal domain. To obtain information on the structure, function and/or evolution of H-NS, we searched for other H-NS-related proteins in the latest databases. We found that HvrA, a trans-activator protein in Rhodobacter capsulatus, has a low but significant similarity with H-NS and H-NS-like proteins. This Gram-negative bacterium is phylogenetically distant from Escherichia coli. Using theoretical analysis (e.g. secondary structure prediction and DNA binding domain modelling) of the amino acid sequence of H-NS, StpA (an H-NS-like protein in E. coli), BpH3 and HvrA and by in vivo and in vitro experiments (e.g. complementation of various H-NS-related phenotypes and competitive gel shift assay), we present evidence that these proteins belong to the same class of DNA binding proteins. In silico analysis suggests that this family also includes SPB in R. sphaeroides, XrvA in Xanthomonas oryzae and VicH in Vibrio cholerae. These results demonstrate that proteins structurally and functionally related to H-NS are widespread in Gram-negative bacteria.
منابع مشابه
Lsr2 of Mycobacterium represents a novel class of H-NS-like proteins.
Lsr2 is a small, basic protein present in Mycobacterium and related actinomycetes. Our previous in vitro biochemical studies showed that Lsr2 is a DNA-bridging protein, a property shared by H-NS-like proteins in gram-negative bacteria. Here we present in vivo evidence based on genetic complementation experiments that Lsr2 is a functional analog of H-NS, the first such protein identified in gram...
متن کاملMechanism of DNA organization by Mycobacterium tuberculosis protein Lsr2
Bacterial nucleoid-associated proteins, such as H-NS-like proteins in Enterobacteriaceae, are abundant DNA-binding proteins that function in chromosomal DNA organization and gene transcription regulation. The Mycobacterium tuberculosis Lsr2 protein has been proposed to be the first identified H-NS analogue in Gram-positive bacteria based on its capability to complement numerous in vivo function...
متن کاملMechanism of environmentally driven conformational changes that modulate H-NS DNA-bridging activity
Bacteria frequently need to adapt to altered environmental conditions. Adaptation requires changes in gene expression, often mediated by global regulators of transcription. The nucleoid-associated protein H-NS is a key global regulator in Gram-negative bacteria and is believed to be a crucial player in bacterial chromatin organization via its DNA-bridging activity. H-NS activity in vivo is modu...
متن کاملOprF and OprL Conjugate as Vaccine Candidates against Pseudomonas aeruginosa; an in Silico Study
Introduction: Vaccine studies against Pseudomonas aeruginosa have often focused on outer membrane proteins (OPRs) due to their potent stimulation of the immune response. Using major outer membrane proteins of cell walls (mOMPs) of P. aeruginosa and other Gram-negative bacteria actively stimulate the immune system without any toxic side effects. Moreover, these antigens show immunological cross-...
متن کاملGenotyping of Pasteurella multocida ovine and bovine isolates from Iran based on PCR-RFLP of ompH gene
Pasteurella multocida (P. multocida), A Gram-negative facultative anaerobic bacterium, is a causative animal pathogen in porcine atrophic rhinitis and avian fowl cholera. The outer membrane of Gram-negative bacteria contains of many different protein in very high copy numbers. One of the major outer membrane, the H proteins have functional as high immunogenicity and antigenicity. In this study ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular microbiology
دوره 31 1 شماره
صفحات -
تاریخ انتشار 1999